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Abstract: In this paper, we introduce a novel feature-point-matching based framework for
achieving an optimized joint-alignment of sequential images from multispectral imaging (MSI).
It solves a low-rank and semidefinite matrix that stores all pairwise-image feature-mappings
by minimizing the total amount of point-to-point matching cost via a convex optimization of a
semidefinite programming formulation. This unique strategy takes a complete consideration of the
information aggregated by all point-matching costs and enables the entire set of pairwise-image
feature-mappings to be solved simultaneously and near-optimally. Our framework is capable
of running in an automatic or interactive fashion, offering an effective tool for eliminating
spatial misalignments introduced into sequential MSI images during the imaging process. Our
experimental results obtained from a database of 28 sequences of MSI images of human eye
demonstrate the superior performances of our approach to the state-of-the-art techniques. Our
framework is potentially invaluable in a large variety of practical applications of MSI images.
© 2017 Optical Society of America
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1. Introduction

Multispectral imaging (MSI) refers to imaging systems that penetrate certain features of physical
object within the field of view by using a number of spectral bands [1–3]. It has been used in
various applications such as but not limited to airborne mapping, astronomical imaging, dentistry,
dermatology, histopathology and ophthalmology [4]. Taking MSI in ocular imaging for example,
the inner limiting membrane all the way to the choroid can be dissected and visualized by taking a
sequence of spectral images via MSI systems like the Retinal Health Assessment (RHA, Annidis
Health System Corp.) [5–7]. MSI provides a collection of noninvasive en face views of the retina
and choroid, that collect and combine spectral information to highlight anatomic and metabolic
signatures for diagnosing and managing diseases. Interpretation of MSI images based on human
visual inspection remains the reference standard in MSI applications. However, computer based
algorithms are attracting more and more research interests due to the ability to provide objective
and automatic image assessments.
One grand challenge in analyzing MSI images comes from the image-to-image spatial

misalignment which is caused by object movement during the imaging process. For example,
we need an analysis of multiple MSI slices from different spectral bands to assess the retinal
pigment epithelium (RPE) disruption because it is characterized by a slight structural variation
of pigment pattern in red and infrared spectral slices in contrast to normal structures in shorter
wavelengths [4]. However, it is not a trivial in practice due to the misalignment between these
spectral slices mainly because of the fact that the acquisition time of eye MSI images is commonly
longer than the natural time scale of eye’s saccadic movement [8]. Similar to the research in other
fields [9–16], this spatial misalignment may introduce troubles into not only automatic but also
manual interpretation and quantification of the anatomic/metabolic variations between spectral
slices.
There exist a variety of techniques for retinal image registration [17–19] in the field of eye

and generic image registration [10] in a broader field. A detailed review of all these techniques
is beyond the scope of this paper and we only provide a summary on current group image
registration methods as they are closely related to the proposed technique in this paper. There are
various group image registration approaches, including the well-known congealing framework
and its extensions [20–22] which focus on aligning a number of binary images of handwritten
digits, 2D face images or 3D medical images via a sequential optimization process to gradually
reduce the entropy of image intensity’s distribution. Other approaches try to improve alignment
performances by taking advantage of shape matching [23], sparse learning [24, 25], image’s
Markov property [14,26], pairwise registration based on normalized cross-correlation [27], robust
matching based on gradient descent optimization [28], image contours [29] and joint alignment
by enforcing temporal smoothness on motion [30].
Theoretically speaking, most of the existing image registration techniques can be used for

estimating and eliminating the spatial misaligment between MSI images of eye with certain
adaptions. However, they are limited according to our experiments because of several basic
reasons. First, many of them rely on independent processes of matching pairwise images, in which
the joint information of MSI images can’t be taken into account. Second, the point matches may
become unreliable when the predefined matching cost is corrupted by the anatomic/metabolic
variations of retina across spectral slices. Third, not all feature-mappings of pairwise images are
solvable considering the fact that different spectral slices (penetrating different light-absorbing
species/chromophores) may be associated with different anatomical structures. Finally, it is not
a trivial to accomplish a semi-automated alignment which is of great importance in practice
especially for difficult images.
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In this paper, we propose a novel framework for achieving a joint discrete alignment of
sequential MSI images. It generates near-optimal feature matches between images by jointly
aligning all image pairs via a convex optimization process. Given a collection of sequential
MSI images, we extract a set of salient feature points from each of them. Then, the proposed
framework concerns a recovery of a globally consistent feature matches by taking advantage of
the aggregated information from the point-to-point matching cost of all image pairs. Specifically,
we encode the feature mapping across each pair of images via a binary matrix and leverage a
stacked matrix to store all these binary matrices. Inspired by a recent finding that enforcing global
consistency (composite feature maps along cycles are identity maps) on the resulted maps is
equivalent to imposing a low-rank constraint upon this stacked matrix [31], we formulate the
joint alignment problem as a semidefinte program (SDP) and solve it via a convex optimization
to obtain a semidefinte and low-rank stacked matrix.
The proposed approach is effective in dealing with the above challenges in MSI image

registration due to several of its advantages over the existing image alignment techniques. First,
pairwise image matching and joint refinement of these matches are solved all at once, resulting in a
near-optimal solution. Second, expert-specified feature-point correspondences can be seamlessly
incorporated into the framework without any change of the optimization technique, which allows
human expert to use his knowledge to guide matching in difficult cases. Third, our approach
is robust to not only the corruptions in point matches but also the incompleteness of pairwise
maps. Experiments of this paper are carried out by using a database consisting of 28 MSI
image sequences of human eye and the results not only demonstrate our approach’s superior
performances to state-of-the-art but also confirm its practical applicability.

2. Our approach

2.1. Problem formulation

Given a collection of MSI images {I1, I2, · · · , IN }, we extract mi feature points from image Ii
and then obtain N feature sets denoted by {S1,S2, · · · ,SN }. For any two feature point sets Si
and Sj , we define an attributed graph Gi j =

{
Si ∪ Sj, Ei j,Ci j

}
where any k ∈ Si and l ∈ Sj

correspond to an edge e = kl ∈ Ei j = Si × Sj and are attributed to a cost c ∈ Ci j ⊂ Rmi×m j . For
Si and Sj , we define a partial map φi j ⊂ Si × Sj to encode point-to-point maps between these
two sets of feature points, with which each element of Si is paired with at most one element of Sj

and vice versa. The ultimate goal of this paper is to propose a tractable algorithm for computing
optimal pairwise partial maps Φ =

{
φi j |1 ≤ i, j ≤ N

}
by taking advantage of the aggregated

information contained in all attributed graphs G =
{
Gi j |1 ≤ i, j ≤ N

}
.

2.2. Matrix representation

We encode each partial map φi j as a binary matrix Xi j ∈ {0, 1}mi×m j in which the elements
associated with φi j take value 1 and the left are 0. When φi j is a one-to-one map, Xi j satisfies
the following constraints {

Xi j1 = 1, if |Si | ≤ |Sj |
XT
ij1 = 1, otherwise (1)

where 1 represents a vertical vector for which all elements are ones.
We leverage an M × M block matrix X ∈ {0, 1}M×M to store the entire collection of{

Xi j |1 ≤ i, j ≤ N
}
, where M =

∑N
i=1 mi denoting the total number of features points extracted
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from the entire collection of MSI images:

X =


Im1 X12 · · · X1N
X21 Im2 · · · X2N
...

...
. . .

...
XN1 XN2 · · · ImN


(2)

where the diagonal blocks are identity matrices representing self-maps. Obviously, Xi j = XT
ji

when φi j and φ ji are one-to-one maps and X in Eq. (2) is hence a symmetric matrix. In addition,
when Φ is cycle-consistent (composite maps along cycles, e.g. φki ◦ φ jk ◦ φi j for a 3-circle, are
identity maps), X is low-rank and positive semidefinite (denoted by X � 0), as detailed in [31].

Similarly, we build a M × M block matrix C by stacking all cost matrices
{
Ci j |1 ≤ i, j ≤ N

}
as shown below

C =


C11 C12 · · · C1N
C21 C22 · · · C2N
...

...
. . .

...
CN1 CN2 · · · CNN


. (3)

2.3. Semidefinte programming objective function

Joint MSI image matching can be treated as searching combinatorially maps
{
φi j |1 ≤ i, j ≤ N

}
by minimizing the total matching cost computed by summing the edge cost of all matched points,
which amounts to a minimization of the following objective function

minTr [CX] (4)

with the following constraints
X ∈ {0, 1}M×M, (5)

X � 0 (6)
and

Xii = Imi , (7)
together with the condition in Eq. (1). In Eq. (4), Tr[] denotes trace of matrix.

In difficult cases, expert-specified feature correspondences between MSI images are required
to be incorporated into the algorithm for producing accurate results. In this way, human’s
knowledge can be exploited to guide the matching process. Suppose the manually-provided
feature correspondences are associated with a set of elements in X, denoted by their rows and
columns: U = {(u, v), 1 ≤ u, v ≤ M}. Then, we have

X(u, v) = 1, ∀(u, v) ∈ U, (8)

where X(u, v) means the element of X as specified by (u, v).

2.4. Optimization via convex relaxation

Eq. (4) with the constraints in Eqs. (1) and (5)-(8) formulates a standard form of semidefinite
programming (SDP). A direct optimization of Eq. (4) is NP-hard because the variables contained
in X are binary. To deal with this, we relax these variables to take real values in [0 1]. Then, Eq. (4)
becomes a convex optimization problem which can offer a global optimum within polynomial
time. We employ the alternating direction of multiplier method (ADMM) algorithm [32] which
solves a convex optimization problem by breaking it into smaller easier-to-handle pieces.
The solutions of ADMM are continuous values within [0 1] and we round them by using the

simple greedy algorithm in [31]. The basic idea is to resolve a binary version of X by minimizing
its differences with the continuous version via a linear programming.
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2.5. Matching cost

Feature points used for matching MSI images are specified as the SIFT [33] key locations due
to its prestige of being stable. SIFT detects maxima and minima of the image convoluted with
a Gaussian at different image scale followed by a postprocessing of discarding low contrast
candidate points and edge response points. A robust cross correlation is used to measure the
matching cost between two points [28, 30], which is defined as below when the kth point of Ii is
matched to the lth point of Ij :

Ci, j(k, l) = w · ρ
(

1
γ

(
Ii(k), Ij(l)

) ) + (1 − w) · ρ (
1

γ
(
5Ii(k), 5Ij(l)

) ) (9)

where w ∈ [0, 1] adjusts the contributions of the two terms, Ii(k) and 5Ii(k) represent a square
patch (e.g. 15 × 15) surrounding point k in Ii and its gradient space 5Ii , respectively. In Eq. (9),
Ij(l) and 5Ij(l) have a similar meaning with Ii(k) and 5Ii(k), respectively, but are defined on
point l in Ij . γ(·, ·) in Eq. (9) is the normalized cross correlation [34]. The robust function ρ() is
defined as the Geman-McClure function

ρ(t) = t2

1 + t2/a2 (10)

where a is a parameter which can be determined automatically from the given image and is used
for adjusting the stringency in rejecting outliers [35].

3. Experiment

3.1. Data

We evaluate our algorithm with a validation database comprising 28 MSI image sequences
acquired by using an Annidis RHATM instrument (Annidis Health Systems Corp., Ottawa,
Canada). These images are of oculus dexter (OD) and oculus sinister (OS) from 9 patients
diagnosed with hypertensive retinopathy and 8 healthy subjects. They are provided in the format
of dicom with a bit depth of 16 and in size of 2048× 2048. Each sequence bears at least 8 images
captured with wavelengths of amber, green, infrared, red and yellow, as shown in an exampling
sequence in Fig. 1.
An ophthalmologist manually pick 15 points for each sequence and marked them in all the

MSI images of this sequence by using MRIcron [36]. These manual marks are treated as the
ground truth for validating our algorithm.

3.2. Evaluation

We evaluate several unique characteristics of our framework, including the power of joint
alignment in contrast to the pairwise fashion, its noise resistance, the benefits from the introduced
interactive mechanism and its superiority of performances to the state-of-the-art techniques,
respectively. In our experiments, we set empirically the only parameter w (in Eq. (9)) of our
framework as w = 0.8.

3.2.1. Power of joint alignment

To validate the power of joint alignment in our approach, we exploit the performance curves used
in [31] for assessing the matching errors. Specifically, we calculate for a manually-marked point
in a MSI image the distance between its matched point in the other image and the ground-truth
correspondence. We treat a match as correct if this distance divided by an approximated value
(1035 pixels in our experiments) of the radius of retina is below a threshold. Then, we plot
a curve (analogous to the precision-recall curve) showing the ratio (a value in [0 1]) of the
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Fig. 1. A sequence of MSI images acquired by Annidis RHA from a patient diagnosed with
hypertensive retinopathy, in which from left to right and from top to bottom, the first 11
images are captured with short wavelengths of “Green” (MSI-550), “Yellow” (MSI-580) and
“Amber” (MSI-590), respectively, followed by 4 wavelengths of “Red” (MSI-620, MSI-660,
MSI-690 and MSI-740) and 4 wavelengths of “Infrared” (MSI-760, MSI-780, MSI-810 and
MSI-850), respectively.

manually-marked points with correct matches over the threshold values. For points bearing no
corresponded point in the other image, interpolation is conducted to estimate the corresponding
location. A curve closer to the upper-left corner indicates that the algorithm performs better. In
our experiment, we mix the manually specified marks with the detected SIFT key locations and
use them by computing their matching cost as defined in Sec. 2.5.
For each image sequence, we choose randomly a portion (with a percentage 0%, 25%, 50%,

75% and 100%, respectively) of the images and process them with our joint alignment scheme.
For the matches of each of the left images to other images, we exploit pairwise alignment
which can be carried out by setting N = 2 in our framework as explained in Sec. 2. For the
percentages of 25%, 50% and 75%, the random portion choosing process is repeated for 10 times
and the resulted ratios are averaged. Final results for each test are computed by averaging over
correct-correspondence ratios of all image pairs.
As shown in Fig. 2, we can see that our algorithm produces improved accuracies when more

images are aligned in a joint way. It means that more images should be included in joint alignment
when using the proposed approach.

3.2.2. Noise resistance and benefits from manual matches

To validate the noise resistance property of our approach and the benefit of providing manual
matches, we test our approach onlywith the feature pointsmarkedmanually by the ophthalmologist.
We add Gaussian noise with zero mean and various variances (0, 0001, 0.05, 0.1, 0.15 and 0.2,
respectively) in the matching costs computed for these points. Also, we randomly choose different
percentages (0%, 25%, 50%, 75% and 95%, respectively) of the pairs of manually-matched points
and fix them (via Eq. (8)) when resolving the joint alignment by our approach. The randomly
choosing process is repeated for 10 times and the ratios of correct matches are averaged as the
final results. The threshold of matching distance is set to 0.03 in our experiments.
We have two findings from the results in Fig. 3. First, the algorithm performs better when
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Fig. 2. Performance curves of our approach when different percentage (0%, 25%, 50%, 75%
and 100%, respectively) of the images in each sequence are matched jointly while the left
ones are matched in a pairwise fashion. The y-axis shows the ratio of correct matches while
the x-axis denotes the threshold of matching distance divided by the radius of retina.

Fig. 3. Performance curve of our approach when Gaussian noise with zero mean and various
variances (0, 0001, 0.05, 0.1, 0.15 and 0.2, respectively) is added in the matching cost
and when different percentage (0%, 25%, 50%, 75% and 95%, respectively) of manual
correspondences are fixed (via Eq. (8)) when solving the joint alignment.
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more point correspondences are added into our algorithm as a constraint known a priori. For
example, the average improvement over all noise levels of the case using 75% of manual
correspondences compared with no manual correspondences is 26.2% for all images. We also
find that this improvement is even larger (with a value of 37.4%) for the images from patients.
They demonstrate the benefit of manual correspondences in improving matching performances
especially for difficult images (e.g. images from patients). Second, our algorithm deteriorates
with corruptions added in the matching cost. However, we find that more than half of the features
points are still matched correctly even when heavy noise (with a Gaussian variance of 0.2) is
added and no manually-set correspondences are provided.

3.2.3. Comparisons with state-of-the-art techniques

We run our approach in both a pairwise and joint alignment fashion and compare the performance
with two state-of-the-art techniques in sense of matching sequential MSI images in a fully-
automatic mode, including the quadratic programming based group registration in [30] and the
pairwise robust matching in [28]. In more detail, the automatically-detected SIFT key locations
are used for matching the images and the manually-specified marks are employed for validating
the matching accuracy. We estimate the corresponding location in one image of a manual key
location in the other image by an interpolation process which is carried out using the matched
SIFT key locations. Correct-match ratios are then computed over all manual marks (with a
matching distance threshold of 0.03 as explained above).

From the values of correct-match ratio on the healthy subjects and patients in Table 1 and from
the displays of matching results in Fig. 4, we have at least two findings. First, joint alignment
outperforms pairwise matching and at the same time the joint alignment function of the proposed
SDP based scheme is superior to the one of the quadratic programming (QP) [30]. As a major
reason, the proposed approach exploits a binary matrix representation (as explained in Sec. 2.2)
to resolve all point correspondences jointly and near-optimally in contrast to the temporal
smoothness constraint applied to the resulted matches by QP [30]. Second, more accurate matches
are obtained on healthy subjects than patients for all algorithms probably because of the affects
of image deterioration caused by retinal degeneration.

Ratio SDP-Pairwise SDP-Joint QP-Group Robust
Healthy 0.63 0.95 0.86 0.69
Patient 0.46 0.88 0.79 0.57

Table 1. Ratios of correct matches (with a distance threshold 0.03) of our approach in a 
pairwise way (“SDP-Pairwise”), our approach of joint alignment (“SDP-Joint”), the quadratic 
programming based group registration in [30] (“QP-Group”) and the pairwise robust matching 
in [28] (“Robust”), performed on the healthy subjects and patients, respectively.

We use a Dell PC with 2.39 GHz Intel Core 2 CPU and the optimization process can be finished
within 120 seconds when matching simultaneously 10 MSI images for each of which about 420
landmark points are detected. In our experiments, the stoppage criterion of ADMM is set as
the condition that the Frobenius norm of the difference between X’s estimations in neighboring
iterations exceeds 10−4, which costs about 350-500 iterations for a typical MSI sequence.

4. Discussion and future work

Misalignment of sequential images from multispectral imaging (MSI) needs to be eliminated in
order for manual/automatic assessment of them in practical application of MSI. To accomplish
this, image alignment (registration/matching) plays an important role by providing spatial
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Fig. 4. Comparisons of matched feature points on the images in Fig. 1 by our algorithm in a
pairwise-matching fashion (upper-left), our algorithm in a joint alignment way (upper-right),
the technique in [30] (lower-left) and the one in [28] (lower-right). From top to down of each
panel, a local area of the “Amber” (MSI=590), “Green” (MSI=550) and “Red” (MSI=620)
images is shown, respectively.
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correspondences between images. A naive approach is to compute pairwise matching across all
image pairs in isolation, i.e. computing feature point correspondences between a pair of images
independently from the operations on other image pairs. Many off-the-shelf algorithms can
accomplish this with minor adaptions to MSI images. However, a joint alignment is capable of
generating better pairwise matches by resolving all pairwise matches simultaneously, as shown
by our previous work which is carried out by enforcing spatial smoothness on transformations
fields between temporally neighboring image pairs [30].

In this paper, we have presented a novel approach for joint alignment of sequential MSI images
by formulating the problem as a convex optimization framework. We encode pairwise image
matching map via a binary matrix and store the binary matrices of all image pairs in a stacked
matrix. As shown by recent work in [31], enforcing consistency on the resulted pairwise matching
maps is equivalent to imposing low-rankness upon this stacked matrix. By leveraging this
important finding, we express joint alignment of sequential images as a semidefinite programming
(SDP) and solve a low-rank semidefinite matrix via convex optimization together with two
additional processes of relaxation and rounding. This new approach recovers globally consistent
feature matches by taking advantage of the aggregated information from the point-to-point
matching cost. The power of our approach in contrast to state-of-the-art (e.g. our previous work
in [30]) can be reflected by its four characteristics. First, pairwise matching and joint refinement
of pairwise matches are solved all at once by minimizing the total feature point matching cost and
at the same time exploiting the mutual relations between pairwise maps. Second, expert-specified
feature point correspondences can be easily incorporated in our framework as additional equal
constraints of the SDP. This allows an interactive aligning function while keeping the complete
optimization process unchanged. Third, our approach performs better in resisting both the
corruptions in pairwise matches and the incompleteness of pairwise maps. Finally, our main part
of our algorithm is parameter free (the only parameter in our framework is w in Eq. (9)) and
computationally feasible.
We have validated the proposed approach with a database of 28 sequences of MSI images of

human eyes with and without retinal degenerations. Experimental results show our approach’s
advantages over pairwise alignments and the state-of-the-art techniques in sense of accuracy and
robustness to both map’s corruptions and incompleteness.
Our approach can run in both a fully-automatic way and an interactive fashion, which is

invaluable in ophthalmologist’s clinical practice. Fully-automatic algorithm is extremely useful
in ophthalmologist’s clinical practice because it can reduce labor cost and generate objective
results. However, its performance may deteriorate significantly in practice especially for various
difficult cases where the automatically-detected feature points become unstable. In this situation,
manual intervention becomes necessary and our approach provides an easy solution for that.
In addition to MSI image alignment, our joint alignment framework can find applications in

other domains, e.g. aligning MSI images used in other fields such as dentistry, astronomy and
dermatology (as explained in Sec. 1), or conducting object recognition, segmentation [37], image
retrieval and structure from motion [38].

We have several works to address in future. First, in this paper, we assume that each feature point
of an image with fewer points detected can be matched to one point in the other image. However,
it doesn’t always hold in practice especially when certain contents in one image are missing in the
other. We would deal with this in our future work. Second, we expect X in our objective function
to be of low rank, however, we don’t include an explicit low rank constraint in the optimization
process. Although it is proved that the enforcement of the positive-semidefinite property on X (by
Eq. (6)) is equivalent to a constraint of low rank [31], we think it is very interesting to investigate
the performance of an explicit constraint. Third, we will also validate our approach by using other
format of images, e.g. RGB vs near-infrared images, flash vs no-flash images and depth vs color
images. Finally, we would like to try other matching cost measurements [39–41] or optimization
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techniques [40, 42, 43] to get better performances.
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